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Publisher Summary

This chapter describes the kinetic model of muscle contraction. The myosin-
actin interaction is the necessary condition for striated muscle contraction. These
muscle proteins are located in the two systems of protofibrils, which are able to
make contact with each other by means of myosin cross-bridges at certain
discrete points only. According to the sliding filament concept, it is the
interaction of myosin bridges with the active sites of the actin protofibrils that
provides the moving force of the contracting muscle. Each bridge must act
cyclically because the filament length does not change considerably during
contraction. The mechanical properties of the contracting muscle are determined
at each moment by the distribution of its myosin bridges among the stages of an
elementary working bridge cycle.
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KINETIC MODEL OF MUSCLE CONTRACTION
V.I. Descherevsky

Institute of Biophysics of the
U.S5.5.R. Academy of Sciences,
Puschino, Moscow Region, U,S.S.R,

The myosin-actin interaction is the necessary condition
for striated muscle contraction (1). These two basic mus-~
cle proteins are located in the two systems of protofibrils,
which are able to make contact with each other by means of
myosin cross-bridges (2,3) at certain discrete points only.
According to the sliding filament concept, it is the inter-
action of myosin bridges with the active sites of the actin
protofibrils that provides the moving force of the contrac-
ting muscle (4-6). Each bridge must act cyclically (6) be-
cause the filament length does not change considerably dur-
ing contraction (3).

The mechanical properties of the contracting muscle are
- probably determined at each moment by the distribution of
its myosin bridges among the stages of an elementary work-
ing bridge cycle. 1If so, we may postulate on the series of
stages of which the cycle consists, the probabilities of
the transition between them and also try to describe muscle
contraction by the methods of formal chemical kinetics.

Such an approach 1s a simplification of the idea given
by Huxley (5).

Description of the Model

We shall simulate the behavior of a pair of protofibrils
- thick and thin. Then the sarcomere will be considered as
a parallel set of such identical pairs, the muscle fiber
representing a series of identical sarcomeres. Proto-
fibrils are regarded as rigid pivots with active sites
placed periodically along them, i.e, with cross-bridges on
myosin fibrils and with sites of their possible binding on
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actin fibrils. The following assumptions have been made
with regard to the structure of an elementary working bridge
cycle,

1. In an excited muscle a cross-bridge has a chance to
be bound with a linking site on the actin filament. Bind-
ing makes the bridge, or, more probably, the remainder of
a myosin molecule associated with the bridge (perhaps the
L-meromyosin part), begin to shorten. It is essential that
the myosin molecule be allowed to undergoe the conformational
rearrangement only if the filaments are sliding relative to
each other., The speed of shortening of the molecule will
be equal to the speed of this sliding., During this "mole-
cular contraction" the cross~bridge will produce an active
moving force,

2. Only when the conformational transition is over does
the bridge have the chance of splitting. From this moment,
up to the point of realizing this chance, the bridge is
producing a hindering force due to a continuous sliding of
the filaments,

3. Active and hindering forces are constant and do not
depend on the velocity of sliding, their absolute values
being identical.

4, The speed of association of the free bridges with
the actin filaments is not limited by the frequency of
their encountering the receptive sites., This process, as
well as the splitting of the associated bridges, follows
monomolecular kinetics.

We shall not concentrate on the possible nature of all
these processes because it is not important for our model,
But the qualitative picture given by Davies (7) may serve
as a good illustration for this scheme.

Mathematical Formulation

According to our scheme, the bridge in an excited mus-
cle can be in one of three possible states: a) a free state,
b) an associated state, when the bridge produces an active
force, i.e. the state of conformational rearrangement, and
¢c) an associated state in which the bridge produces a hin-
dering force, i.,e. when the active conformational rearrange-
ment is completed.
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An elementary working cycle of the myosin bridge may be
depicted as follows:

(Q)——Jg—e(b)

BN

(C)

The symbols near the arrows signify the corresponding trans-
ition constants. The constant of tranmsition from(b)to(c)

is proportional to the speed of sliding of a thick filament
relative to a thin filament, U , and inversely proportional
to the mean value of the shortening of the myosin molecule
during the active conformational rearrangement,gd .

Suppose that & is the total number of myosin bridges in
the muscle layer of a half sarcomere length with the cross-
section being 1 cm?. If n and m represent the number of
bridges in states(b)and(C)respectively, the following equa-
tions can be written:

v
dn | (% -n-m)- ¥ 1)
dm _ v, _ [2]
dt - g.n P(lfﬂ

The force developed by the muscle at any one time will be
f(n-m) where £ is the absolute value of active and hindering
forces of the associated myosin bridges. So, the equation
governing the motion of the mechanical system connected to
the muscle will be

MEL = f(n-m)-P)

where M is the effective mass of the mechanical system, [
is the shift of the end of the muscle associated with the
mechanical system, and P(L)is the external force dependent
on the shift L . The muscle mass and the force of mechani-
cal friction are regarded here as being negligible,

The shift L is expressed as follows:

L=a~4
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where A/ is the number of sarcomeres along the muscle and &
is the shortening of a single sarcomere. Thus the whole
system of equations will be:

4= Ky (a)mm-Kgvn (g
g—? = Kavun- Km [5)
g_: -9 [7]

where K-1=;1- and o(({) is the total number of myosin bridges
in the filament overlap which depends upon the degree of
shortening e .

Stationary Contraction

The stationary contraction, at a constant speed, takes
place under isotonic conditions if the muscle length is
about the same length in situ. In this case &W) = ko (8)
and P(W/)=P are constant and do not depend on £ . Equat-
ions [4], [5] and [6] do not contain ¢ , so they form the
exclusive system whose steady state (é% =0, ‘é%' =0, ‘é{;’: 0)
is single: .

Kot P)rKaP Kilfto=P) . o KiKa  feto-P
F2Ki* KD Y JK 4K (KKK R~_‘<¢_K1H°.p[81

The expression for the stationary velocity, iy, may be
changed in such a way that:

n

(P+0)v=b(R-P) 9]
where FPo=+ao
- K __Ks
a= K1+K2'Fd°" Ki*szo [10]
and
_ Ko Ki _ _Ka o _ a
b = K—l K;’Kz_ K-1 P° = Ymax P° [11]

where Umaxls the contraction velocity at P=0

Expressions [9], [10] and [11] coincide in detail with
the experimental correlations discovered by Hill (9).
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The rate of the total energy production will be

TF E Kam i'((;_K:(f_dl: )P) Const (P P) (12]

where £ is the energy of the chemical reactions occurring
in each elementary cycle. It is probably equal to the
energy of hydrolysis of one ATP molecule.

The rate of heat production can be obtained by sub-
tracting mechanical power from equation [12] and by express-
ing -qu- P through the stationary V from equation [8]:

AQ AE PV n K]. Po"' ?(K,-!'Kz)'(zk]_*'(z) PJ [13]

dt  dt 2K+ Ky 2K+ K,
where
€ K1 €
-2l - = 14

has the sense of an inverse efficiency of the elementary
cycle because ¥§ is the mechanical work of the myosin
bridge during the elementary cycle.

Ka+2K; iQ _ .
K, + Ky then 4t =QV this being in agreement

with the experimental results of Hill (9).

If 7=

Expression [13] is in conformity with the more recent
results of this same author (10), if % =1.4 % 0.3 and

=5.5=1

It should be recognized that expression [13] does not
contain the activation and maintenance heat, as they are
probably due to the action of the muscle activation system
rather than the contractile system (11).

Estimation of the Parameters

There are five parameters in our scheme connected with
the intimate mechanism of muscle contraction: o, K,, Ka, Ky
and ¥ . Comparison with Hill's equation gives three relat-
ionships between them:
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- K _a Ka
‘F‘xo = Po ’ K1+K2' g s “T<: = Umax

domay be estimated as 1013 from the structural data (6) and
formula [14] gives the last relationship we need.

Assumlng that p. = 3kq(12), %-__ , 1=1
Vmax= = (a half of the sarcomere length)/sec = l.5x10'l‘cm/sec
9) ana the energy of hydrolysis of the ATP molecule
3x10-13g cm2/sec (13), we shall have

f= 3x10-7g im/secz, Ky= 100 cm'l, K,= 150 sec™!
Ky= 50 sec™i,

and

Isotonic Contraction

The dynamics of movement towards the steady state [8]
may be obtained by integrating the system of equations [4],
[5] and [6] at x()=Koand P(AML)= P . This system,
however, has only a slight non-linearity and linear approxi-~
mation gives quite satisfactory results in this case.

On introducing new variables such as X = ok >y U= Kk,
y = ;\"—‘ and U = 5;U, the system {4], {5] and [6] will be
o

written as:

dx _ 1-X-9y - ux
1< Y [15]
dy 3
2= = UX —9Y 16
e [16]
ﬁﬁ% =B8(x-y-R) [17]
B -5 Xa
where A—No oand 8= ™ 2/\/’\(}
The steady state [8] in terms of these variables will
be
_ 4A+1 | -A . _ 3(-A)
Xo = 5+ ’ ‘jo=}§_ y  MYe= Zpei
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The characteristic equation of system [15], [16] and [17]
linearized near this steady state is

N +(3.25+3.750) ) +(15a +0.4 b)A+b=0 [18]

Here o=
change:

0240<1 and 1< b <500 if A/ =21.5x10% and & is
allowed to change from 102 o 104 cm/sec2 by using various
isotonic levels.

‘i.%ﬂf—l and b=B(4A+1) have the following limits of

The whole picture of the eigenvalues of equation [18]
in the plane of the parameters @ and b is shown in Figure 1.
At almost all values of the parameters, one real negative
root Ay, and a pair of complex roots Ay=pP+iw and Az=-P-iw
with the negative real part are present.

|
1 20
08 =
9 ——
06
_____________ 4
I B
04
02 i MUY PR UR
49 5og

Figure 1. Parametrical plane of equation [8]. The levels
of w, p and A, are given by solid, dashed and dashed-
dotted lines, respectively.

This means that motion towards the steady state speed
given by Hill's equation occurs as follows. The mean level
of the contraction speed approaches the steady state value
with a time constant of R‘f’)’.} . Around this mean level
there occur damped sinusoidal oscillations with a period of
%r K; and a damping constant of p";-—': . The amplitude of
the oscillations is determined by the initial perturbation.
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It should be emphasized that in these calculations we
do not take into account the elastic properties of the mus-
cle. Therefore, the system [15]-[17] does not contain any
resonance elements. The oscillatory mechanism may be ex-
plained as follows. The speed of transition of myosin
bridges from state (b) to (c) varies directly with the velo-
city of contraction. If, at the first moment, the contrac-
tion velocity is zero, then the transition from (Q) to(b)
will prevail. The force developed by the muscle, the acce-
leration and the velocity of inertial loading will rise
rapidly, this resulting in the predominance of the transi-
tion from (b)to (¢) . Because of the loading inertia this
will cause the force to fall to a level insufficient for
the steady state speed to be maintained, and the cycle will
then repeat.

As an illustration, a numerical integration system
for [15]}-[17] is shown in Figure 2. The value of the para-
meter B corresponds to the case of a muscle lifting a weight
of ﬁ%ﬁ 22 103 cm/sec2. The oscillation frequency coincides
with that calculated using a linear approach.

-2 —

0 20 0 60 % 100 20 o ¢

Figure 2. The initial portion of the isotonic contraction
curves calculated from system [15]-[17] under the condi-
tions: B=36; A=0,75; X(0)=0; Y(0)=0; U(0)=0, The solid
line gives the speed of shortening as a fraction of the
value in unloaded tetani. The dashed line gives the dif-
ference between muscle tension and load, divided by load.
The dashed-dotted line gives the steady state value of
contraction speed at A=0.75.
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Stretched Muscle Behavior

The behavior of stretched muscle under conditions of
isotonic load is described by the system of equations [4]-
[7) with P(A €)= P constant and with ok({)-PC being a
linear function. From the structural and physiological
data it follows that () = ‘1;7ﬁ;$ L (14), if
¢ is a shortening of the sarcomere in cm from the initial
length of 3. 65x10=% cm. Upon introducing these modifications,
system [4]-([7] can, by substitution of the variables, be re-
duced to the form:

%,’-é:z—x—\g—ux [19]

-:t—:=ux—3\j (20]
:‘ﬁ:a(x-s-m [21]

i—f:-iu [22]

Here, x:% , 5:% , u=%v,2=—7.—1"§:§—£'
T=Kit, 8=F 88 | A& s R

This system has three natural time scales of order 1 for
equations {19] and [20], for [21] and for [22]. Taking
into account that € = 14, and 5§ < B< 100 as usual, we may
analyse this system in three steps.

As the first approach we may consider the group of
equations [19]-[21] as "fast", while equation [22] is "slow'".
Then we may obtain the solution by means of Tikhonov's
theorem (15). System [19]-[22] is stable at all values of
the "slow" variable,Z ; therefore, the conditions of this
theorem are satisfied. The solution can be obtained by
substitution into the "slow" equation of the steady state
value of the fast variable WU, which can be derived from
system [19]-{21] with Z treated as a parameter. Coming
back to the initial variables, we have:

1 d(. =V Ka Kt 'F:‘:-{ P

2 dt " Ky K+ Kz L _p"me p
wvhere { is measured in microns. lfK“ L4

[23]
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Taking into consideration that (-Fu(o/l_q.){ is the
isometrical force R;(() developed by the sarcomere at a
given shortening £ , and assuming, as usual, K1/4<r*Kﬁ=-9#
and %2 /K., = Umax We obtain:

[P + ‘;elf:-) ]'U"-' '\r;‘v‘\-ax [ Po, ({)"P] [24]

This is analogous to the Hill equation. It describes
the quasi-stationary isotonical contraction of stretched
muscles (the sarcomere length ranges from 3.65 to 2u).

The second approach to the solution of system [19]-
[22] may be obtained by substitution of the algebraic ex-
pression x-y = A for equation [21].

¥

10

2 3 4

Figure 3, Isotonic contraction of stretched muscle. a)
Mean of contraction speed as a function of sarcomere
length, at various loads. Ordinate - speed of shortening
as a function of the value in unloaded tetani. Abscissa
- sarcomere length in microns. b) Shortening as a fun-
ction of time at various loads, Ordinate - sarcomere
length in microns. Abscissa - time in seconds. The load,
as a fraction of isotonic tetani tension, is indicated
above each curve,

Numerical integration of such a system of equations
at several values of the parameter A is shown in Figure 3,
It differs slightly from the calculations from formula [23]
only at a very low load,.
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The whole system [19]-[22] has a single unstable steady
state

corresponding to the load being balanced precisely by the
nuscle force at a given lengthening. Investigation of this
system as a linear approximation in the neighborhood of this
steady state shows that its approach to the quasi-stationary
speed of contraction [24] is approximately the same as in
the case of unstretched muscle, But there is a region in
the plane of the parameters where oscillations of the cont-
raction speed are undamped. As an illustration, the inte-

gration of system [19]-[22] for such a case is shown in
Figure 4,

i

N S

S G
0 10 20 30 0 50 60 70 0 ¢

Figure 4. The initial region of stretched muscle isotonic
contraction calculated from system [19]-[22] under the
conditions: B=20, A=20/70, X(0)=22/70, Y(0)=0, U(0)=0,
2(0)=24/70. Ordinate - speed of shortening as a fraction
of the value in unloaded tetani. Abscissa - time in
milliseconds,

Isometric Contraction

To calculate the speed of the muscle-force developed
under isometric conditions, it is necessary to know the
load-extension curve P({) for elastic elements connected
in series with contractile elements of the muscle. The data
we need were taken from the work of Jewel and Wilkie (16).

The isometric contraction is described by system [4]-
[7] at & (£) = Ao and with equation [6] substituted by the
algebraic correlation

{:(n—m) =P) [26]
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which expresses the equality of elastic and contractile
forces. It allows U to be excluded from this system, After
a linear substitution of the variables, it takes the form:

dx _ x~x+25
LA - | -X-y-
aT SR -_+9_px (271
dy 1-x—2y 28
dr =T3RS X 2
Fed B

dz 1-X +2y

= 29
dt é_A +2/3x 2]

Here X—n .5“*,, Z= |OO§ s /3=52§ )

8 =2, 2x10‘4 cm is the length of a sarcomere, A(2)= 3 Pe)
is the relationship between relative force and relat1ve°ex—
tension of an elastic component, which has the following
analytical form:

0.08a723 + 0.03482>+0.22 R Z£115
A(z) {0.6362 - 0.319  fec 23115  [30]

System [27]-[{29], under initial conditions of X(0)=0,
Y(0)=0, 2(0)=0 describes normal isometric tetani of the
muscle, Tension redevelopment, after quick release is gover-
ned by the same system under initial conditions of X(0)=0.5,
Y(0)=0.5, 2(0)=0. This may be explained as follows. Before
the quick release the muscle develops the maximum isometri-
cal force, all its bridges being in state (b), During the
quick release the force falls and the bridges shift at the
speed K4qvto state (c), but not to state (a), due to the
limited value of the constant Kj;. The fact that the force
falls to zero means that half of the bridges are in state
(b) and the other half are in state (c).

The speed of the force development can also be cal-~
culated easily from the load-extension dependence [30] and
the stationary force-velocity relationship {9] (see ref.16),
The results of our calculations are shown in Figure 5. For
a comparison, the experimental and calculated curves from
(16) are shown in Figure 6.
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Figure 5., Isometric contraction. Ordinate - tension as a
fraction of the maximum value, Abscissa - time in milli-
seconds., Solid line: calculation from the force-

velocity [9] and load-extension [30] correlations. Dashed
line: initial rise of tension calculated from system [27]-
T297 under the conditions: X(0)= 0, Y(0)=0, Z(0)=0,
Dashed-dotted line: tension redevelopment after quick
release, calculated from system [27]-[29], under the
conditions: X(0)=0.5, Y(0)=0.5, £(0)=0.

Tension (g wt.)

L 1 1 1 1 1 J
0 40 80 120

Time {msec)

Figure 6. Isometric myograms from reference (16), Solid
circles: curve of rise of tension calculated from the
force-velocity and load-extension curves. Open circles:
observed isometric myograms; @ , initial rise of tension;
O, redevelopment of tension after quick release.
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Discussion

The sliding filament concept is at present the most
valid scheme of muscle contraction., The first qualitative
theory of muscle contraction based on it was advanced by
Huxley (5).

The most essential feature of the work presented here
is that it postulates a discrete spectrum of states in which
the bridges are allowed to exist. This makes possible the
simplification of mathematical formalism by using ordinary
differential equations instead of partial ones.

The formalism of partial differential equations employ-
ed by Huxley(5) permits the analysis of only the simplest
case of the stationary isotonic contraction. In this work,
the partial equation has been derived for the fraction n(X,t)
of myosin bridges combined with actin acceptors, where X is
the deviation of the myosin bridge equilibrium position from
the nearest actin binding site. The equation has the form:

g—;‘ = (1-n)f6) —ng(x)

where f(x) and g(x) are the rate constants of bridge binding
and splitting, respectively. This equation should contain
the termﬁ%%governing the variation of n(x,t) conditioned
by the bridge current due to filament sliding. It is pro-
bably the lack of this term that leads to some of the dis-
crepancies mentioned by the author, himself (5).

The constant parameters of our model Ky, K., ¥zand §
can be treated as the average values of some arbitrary limit-
ed functions of the variables characterizing the myosin
bridge state. We suppose, however, that good physical grounds
exist for some of them to be truly constant.

The independence of these parameters from the speed of
muscle contraction arises from the following fact. The rates
of free macromolecular transitions exceed by several orders
the maximum rates of conformational transitions permissible
for myosin molecules when the bridges are combined with the
actin filaments, So, in this case, any change of its state
may be regarded as an equilibrium process. This leads to
independence of K. ,Kjyand ¥ fromv, Independence of K,
from V' results directly from assumption 4 made at the
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beginning of this paper. The validity of this assumption

is increased by the fact that all g-~actin monomers consist
of a thin filament capable of combining with H-meromyosin,
thus being the potential binding sites for myosin bridges

an.

Some of these actin monomers, however, due to a periodic
organization of the thin filament, may occupy a more suitable
position relative to the given thick filament. This is not
important for the case of skeletal muscles of vertebrates
in view of the lack of synchronization of periodicity of
thin filaments across the sarcomere (3). But it does become
essential in the case with insect flight muscles, due to
their crystalloid organization (18). A slight modification
of our model is sufficient to describe an oscillatory con-
traction of these muscles.

The independence of ¥ from the degree of myosin mole-
cule conformation rearrangement,§ , may be explained as |
follows, Evidently, {f=d€/§, where £(%)is an energy change
of the myosin molecule during its conformational rearrange-
ment, If a large number of weak hydrogen or van der Waals
bonds are formed, or broken, in this process, then E/QL}
may be a constant. This would be so, for example, if the
conformational rearrangement were similar to the wave pro-
pagation along the uniform molecular backbone.

In our model we suggest that the rate constant for
splitting of the bridge in state (b) should be zero, A
good reason for this assumption is given by the independence
of the isometric muscle force, FPo , from temperature (19).
In our model P> does not depend on temperature since o,
the structural characteristics of the muscle, does not de-
pend on it, If the rate constant l(lof splitting for the
bridge in state (b) were comparable to Ki, then f would
be:

P_._ foto Ky
A

In this case f would be independent of temperature only if
very special assumptions concerning the K; and 1(1 tempera-
ture dependence were made.



V. 1. DESCHEREVSKY

The present form of our model fails to describe the
process of muscle relaxation. For this purpose it is neces-
sary to postulate a fourth possible state of the myosin
bridge. The bridge is allowed to change to this state from
states (a) and (b) when the muscle is being stretched (v‘<o).
The force produced by the bridge in this state may be equal
to f and the rate constant of its splitting may be about

K2 /6. Such values of the parameters are in accordance
with the findings of Katz (20):

dv = 6|9l£
dp P<P, dP ipsp,

According to this modification of our model, relaxation is
possible only if the muscle is subjected to an external
force. It should be noted that under some conditions the
process of relaxation is a very slow one, The high fre-
quency Young's modulus of frog sartorius muscle maintains
an increased value for 1 sec after the muscle stimulation
has ended (21),

When describing muscle relaxation it is necessary also
to take into account the rate of Catt removal from the con-
tractile system of the muscle. This should also be done
if the twitch and the first moments of tetani are of in-
terest, TFor this purpose it is sufficient to assume that
the constant K; is dependent of time.

The parameters of our model were estimated by checking
with the Hill equations. Thus, the model is able to predict
the dynamics of muscle contraction under various conditions
if the stationary characteristics of muscle contraction are
known.

This model satisfies the Hill equations exactly, with
all parameters having reasonable values., It is in good
conformity with the data on the isometric tetani force de-
velopment and explains the distinctions between the normal
isometric contraction and the force redevelopment after
quick release,

A wide range of behavior patterns of the model under

various conditions gives the probability of good experimen=-
tal varification.
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Some experimental data indicate that the oscillatory
modes of ordinary skeletal muscle contraction are possible
(22,23)., In reference (16) the authors explain oscillations
of the speed of isotonic contraction, following controlled
release, as an artifact arising from oscillations of the
release relay, - though this is not always the case,

It should be noted that oscillatory modes of contrac-
tion are more efficient than monotonous ones.
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